
 

www.iaset.us                                                                                                                                                     editor@iaset.us 

 

COMMON FIXED POINT THEOREM FOR FINITE NUMBER OF WEAKLY 

COMPATIBLE MAPPINGS IN QUASI-GAUGE SPACE 

V. K. GUPTA & GARIMA SAXENA 

Department of Mathematics, Govt. Madhav Science College, Ujjain, Madhaya Pradesh, India 

 

ABSTRACT 

The present paper deal with common fixed point theorems for finite number of weak compatible mapping in 

Quasi- gauge space. By pointing out the fact that the continuity of any mapping for the existence of the fixed point is not 

necessary, we improve the result of Rao and Murthy [6]. 
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1. INTRODUCTION 

The concept of quasi-gauge space is due to Reilly [7] in the year 1973. Afterwards, Antony et. al. [2] gave a 

generalization of a common fixed point theorem of Fisher [3] for quasi-gauge spaces. Pathak et. al. [5] proved fixed point 

theorems for compatible mappings of type (P). Rao and Murthy [6] extended results on common fixed points of self maps 

by replacing the domain “complete metric space” with “Quasi-gauge space”. But in both theorems continuity of any 

mapping was the necessary condition for the existence of the fixed point. We improve results of Rao and Murthy [6] and 

show that the continuity of any mapping for the existence of the fixed point is not required.  

Definition 1.1: A Quasi-pseudo-metric on a set X is a non negative real valued function p on X×X  such that 

 p(x,x) = 0 for all x  X. 

 p(x,z)  p(x,y) + p(y,z) for all x,y,z  X. 

Definition 1.2: A Quasi-gauge structure for a topological space (X, T) is a family P of quasi-pseudo-metrics on X such that 

T has as a sub-base the family 

{B(x, p, ) : x  X, p  P,  > 0} 

Where B(x, p, ) is the set {y  X: p(x, y) < }. If a topological space has a Quasi-gauge structure, it is called a 

quasi-gauge space. 

Definition 1.3: A sequence {xn} in a Quasi-gauge space (X, P) is said to be P-Cauchy, if for each >0 and p P there is an 

integer k such that p(xm, xn) <  for all m, n  k. 

Definition 1.4: A Quasi-gauge space (X, P) is sequentially complete iff every P-Cauchy sequence in X is convergent in X. 

We now propose the following characterization. Let (X, P) be a Quasi-gauge space X is a T0 Space iff                   

p (x ,y) = p(x, y) = 0 for all p in P implies x = y. 

Antony [1] introduced the concept of weak compatibility for a pair of mappings on Quasi-gauge Space.  
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Definition 1.5: Let (X, P) be a Quasi-gauge space. The self maps f and g are said to be (f, g) weak compatible if lim             

gfxn = fz for some z  X whenever xn is sequence in X such that  

lim fxn = lim gxn = z and lim fgxn = lim ffxn = fz. 

f and g are said to be weak compatible to each other if (f, g) and (g, f) are weak compatible. 

Lemma 1.1: [4] Suppose that ψ: [0, ∞ ) → [0, ∞) is non-decreasing and upper semi-continuous from the right.                   

If ψ (t) < t for every t > 0, then lim ψ
n
(t) = 0. 

Rao and Murty [6] proved the following. 

Theorem 2: Let A, B, S and T be self maps on a left (right) sequentially complete Quasi-gauge T0 space (X,P) such that  

 (A,S), (B,T) are weakly compatible pairs of maps with T(X) ⊆ A(X); S(X) ⊆ B(X); 

 A and B are continuous;  

 max{p²(Sx, Ty),p²(Ty, Sx)}≤ø{p(Ax, Sx)p(By, Ty), p(Ax, Ty) p(By, Sx), 

p(Ax, Sx)p(Ax, Ty), p(By, Sx)p(By, Ty), 

p(By, Sx)p(Ax, Sx), p(By, Ty) p(Ax, Ty)};  

For all x, y  X and for all p in P, where ø : [0, ∞)⁶ → (0, +∞) satisfies the following: 

 ø is non-decreasing and upper semi-continuous in each coordinate variable and for each t > 0 

Ψ(t)=max{ø(t,0,2t,0,0,2t),ø(t,0,0,2t,2t,0),ø(0,t,0,0,0,0),ø(0,0,0,0,0,t) ø(0,0,0,0,t,0)} < t; 

Then A, B, S and T have a unique common fixed point. 

Theorem 2.2: Let A,B,S and T be self maps on a left(right) sequentially complete Quasi-gauge T0 space (X,P) with 

condition (iii) and (iv) of Theorem 2.1 such that  

 (S,A) ,(A,S),(B,T)and (T,B) are weakly compatible pairs of maps with T(X) ⊆ A(X); S(X) ⊆ B(X); 

 One of A,B,S and T is continuous: 

Then the same conclusion of Theorem 2.1 holds. 

We prove Theorem 2.1 and Theorem 2.2 without assuming that any function is continuous for finite number of 

mapping. 

3. MAIN RESULTS 

Theorem 3.1: Let A, B, S, T, I, J, L, U, P and Q be mappings on left sequentially complete Quasi-gauge T₀ Space (X,P) 

such that 

 (P,STJU) and (Q,ABIL) are weakly compatible pairs of mappings with                                                             (3.1) 

ABIL(X) ⊆ P(X); STJU(X) ⊆ Q(X); 

max{p²(STJUx, ABILy),p²(ABILy, STJUx)} ≤ ø{p(Px, STJUx)p(Qy, ABILy),                                                 (3.2) 
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p(Px, ABILy) p(Qy, STJUx), 

p(Px, STJUx)p(Px, ABILy), 

p(Qy, STJUx)p(Qy, ABILy), 

p(Qy, STJUx)p(Px, STJUx), 

p(Qy, ABILy) p(Px, ABILy)};  

For all x, y ∈X and for all p in P, where ø : [0, ∞)⁶ → (0, +∞) satisfies the following: 

ø is non-decreasing and upper semi-continuous in each coordinate variable and for each t >0:                          (3.3) 

Ψ(t) = max{ø(t,0,2t,0,0,2t), ø(t,0,0,2t,2t,0), ø(0,t,0,0,0,0),  

ø(0,0,0,0,0,t) ø(0,0,0,0,t,0)} < t. 

Then A, B, S, T, I, J, L, U, P and Q have a unique common fixed point. 

Proof: Let x0 be an arbitrary point in X. since (3.1) holds we can choose x1, x2 in X such that Qx1 = STJUx0 and                   

Px2 = ABILx1. 

In general we can choose x2n+1 and x2n+2 in X such that 

y2n = Qx2n+1 = STJUx2n and y2n+1 = Px2n+2= ABILx2n+1; n = 0,1,2                                                                         (3.4) 

We denote dn= p(yn,yn+1) and en =p(yn+1,yn ); now applying (3.2) we get 

max{d
2
2n+2, e

2
2n+2} 

= max{p²(STJUx2n+2, ABILx2n+3), p²(ABILx2n+3, STJUx2n+2)} 

≤ ø{p(Px2n+2, STJUx2n+2)p(Qx2n+3, ABILx2n+3),  

p(Px2n+2,ABILx2n+3)p(Qx2n+3,STJUx2n+2), 

p(Px2n+2,STJUx2n+2)p(Px2n+2,ABILx2n+1),  

p(Qx2n+1,STJUx2n+2)p(Qx2n+2,ABILx2n+3,),  

p(Qx2n+3,STJUx2n+2,) p(Px2n+2,STJUx2n+1)  

p(Qx2n+3, ABILx2n+3) p(Px2n+2, ABILx2n+3)}; 

=ø{p(y2n+1,y2n+2,)p(y2n+2,y2n+3),p(y2n+1,y2n+3)p(y2n+2,y2n+2),p(y2n+1,y2n+2,)p(y2n+1,y2n+3),  

p(y2n+2,y2n+2)p(y2n+2,y2n+3,),p(y2n+2,y2n+2)p(y2n+1,y2n+2),p(y2n+2,y2n+3)p(y2n+1,y2n+3)} 

≤ø{ d2n+1, d2n+2,0, d2n+1(d2n+1, + d2n+2,),0,0, d2n+2 ( d2n+1+ d2n+2)}.                                                                          (3.5) 

If d2n+2 > d2n+1 then 

max {d²2n+1, e²2n+2} ≤ø{ d²2n+2,0, 2d²2n+2,0,0,2d²2n+2} < d²2n+2,                                                                               (3.6) 

by (3.3) a contradiction; hence d2n+2≤ d2n+1Similarly, we get 

d2n+1≤ d2n.                                                                                                                                                               (3.7) 
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By (3.5) and (3.6)  

max{d²2n+2, e²2n+2,} ≤ ø{ d²2n+1,0, 2d²2n+1,0,0, 2d²2n+1}. 

≤ Ψ(d²2n+1)= Ψ{P²(y2n+1,y2n+2)}                                                                                                                              (3.8) 

Similarly we have 

max{d²2n+1, e²2n+1,} ≤ ø { d²2n,0,0, 2d²2n, 2d²2n,0}. 

≤ Ψ {P²(y2n,y2n+1)}                                                                                                                                                 (3.9) 

So 

d²n = P²(yn, yn+1)≤ Ψ {P²(yn+1, yn)} ≤ . . . ≤ Ψⁿ⁻¹{P²(y₁, y₂)}                                                                                (3.10) 

and 

e²n = P²(yn+1,yn) ≤ Ψ{P²(yn-1,y n)} ≤. . . ≤Ψⁿ⁻¹{P²(y 1,y₂)}                                                                                    (3.11) 

Hence by Lemma 1.1 and from (3.10) and (3.11) we obtain 

lim d n = e n=0.                                                                                                                                                      (3.12) 

Now we prove {yn} is a P-Cauchy sequence. To show {yn} is P-Cauchy it is enough if we show {y2n} is              

P-Cauchy. Suppose {y2n} is not a P-Cauchy sequence then there is an ε > 0 such that for each positive integer 2k there exist 

positive integers 2m(k) and 2n(k) such that for some p in P, 

p(y 2n(k),y2m(k)) > ε for 2m(k) >2n(k) >2k                                                                                                             (3.13) 

and 

p(y 2m(k),y2n(k)) > ε for 2m(k) >2n(k)>2k                                                                                                              (3.14) 

For each positive even integer 2k, let 2m(k) be the least positive even integer exceeding 2n(k) and satisfying 

(3.13); hence p(y 2n(k), y2m(k)-2) ≤ε then for each even integer 2k, 

ε < p(y2n(k),y2m(k) 

≤ p(y2m(k),y2n (k)-2)+ (d2m(k)-2 + d2m(k)-1)                                                                                                                  (3.15) 

From (3.12) and (3.15), we obtain limp(y 2n(k),y2m(k)) = ε. By the triangle inequality 

p(y 2n(k),y2m(k)) ≤ p(y2n(K), y2m(k)-1)+ d2m(k)-1} 

p(y2n(K), y2m(k)-1) ≤ p(y 2n(k),y2m(k))+ e2m(k)-1; 

So 

p(y 2n(k),y2m(k))-p(y 2n(k),y2m(k)-1) | ≤ max{ d2m(k)-1, e2m(k)-1}.                                                                                    (3.16) 

Similarly By triangle inequality 

p(y2n(K)+1,y2m(k)-1) - p(y2n(K),y2m(k)) | ≤ max{ e2n(k)+ e2m(k)-1, d2n(k)+ d2m(k)-1}.                                                         (3.17) 

From (3.16) and (3.17) as k→∞,{p(y2n(K),y2m(k)-1)} and p(y2n(K)+1,y2m(k)-1)} converge to ε.  
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Similarly if p(y2m(K), y2n(k)) > ε, 

lim p(y2m(K),y2n(k)) = lim p(y2m(K)-1, y2n(k)+1) 

= lim p(y2m(K)-1, y2n(k)) = ε as k→∞. 

By (3.2) 

ε < p(y2n(K),y2m(k)) 

≤ p(y2n(K),y2n(k)+1) + p(y2n(K)+1,y2m(k)) 

≤ d2n(k) +max{ p(y2n(K)+1,y2m(k)), p(y2n(K),y2n(k)+1)} 

= d2n(k)+max{p(ABIL x2n(k)+1, STJU x2m(k)), p(STJU x2m(k), ABIL x2n(k)+1)} 

≤d2n(k)+[ø{p(y2m(K)-1,y2m(k))p(y2n(K),y2n(k)+1), 

p(y2m(K)-1,y2n(k)+1) p(y2n(K),y2m(k)),  

p(y2m(K)-1,y2m(k)) p(y2m(K)-1,y2n(k)+1),  

p(y2n(K),y2m(k)) p(y2n(K),y2n(k)+1),  

p(y2n(K),y2m(k)) p(y2m(K)-1,y2m(k)),  

p(y2n(K),y2n(k)+1) p(y2m(K)-1,y2n(k)+1)}]
1/2

 

Since ø is upper semi-continuous, as k→∞ we get that ε ≤ {ø(0, ε² ,0, 0, 0, 0)}
1/2

 < ε, which is a contradiction. 

Therefore {yn} is P-Cauchy sequence in X. Since X is complete there exists a point z in X such that lim n→∞ yn=z. 

lim n→∞ Px2n= lim n→∞ ABILx2n-1=z 

and 

lim n→∞ Qx2n+1= lim n→∞ STJUx2n-2=z 

Since STJU(X) ⊆ Q(X), there exist a point u∈ X such that z = Qu. Then using (3.2), 

max{p²(STJUx2n , ABILu), p²(ABILu,STJUx2n)} 

≤ø{p(Px2n,STJUx2n)p(Qu, ABILu),p(Px2n, ABILu)p(Qu, STJUx2n),  

p(Px2n, STJUx2n) p(Px2n, ABILu), p(Qu, STJUx2n) p(Qu, ABILu),  

p(Qu, STJUx2n) p(Px2n, STJUx2n), p(Qu, ABILu) p(Px2n, ABILu) }; 

Taking limit as n→∞, 

max{p²(z, ABILu), p²(ABILu,z)} 

≤ ø{p(z, z)p(z, ABILu),p(z, ABILu)p(z, z),p(z, z)p(z, ABILu),  

p(z, z) p(z, ABILu), p(z, z)p(z, z), p(z, ABILu) p(z, ABILu)} 

≤ ø{0, 0,0,0,0, p(z, ABILu) p(z, ABILu)}, 

< p(z, ABILu) p(z, ABILu) 
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a contradiction. Thus ABILu = z. Therefore ABILu = z = Qu.  

Similarly, since ABIL(X) ⊆ P(X), there exist a point ʋ ∈ X, such that z = Pʋ.  

Then using (3.2), 

max{p²(STJUʋ, ABILx2n+1), p²(ABILx2n+1,STJUʋ)} 

≤ø{p(Pʋ,STJUʋ)p(Qx2n+1,ABILx2n+1),p(Pʋ,ABILx2n+1)p(Qx2n+1,STJUʋ),  

p(Pʋ,STJUʋ) p(Pʋ,ABILx2n+1), p(Qx2n+1,STJUʋ) p(Qx2n+1,ABILx2n+1),  

p(Qx2n+1,STJUʋ) p(Pʋ,STJUʋ), p(Qx2n+1,ABILx2n+1) p(Pʋ,ABILx2n+1)} 

Taking limit as n→∞, 

max{p²(STJUʋ, z), p²(z,STJUʋ)}  

≤ ø {p(z,STJUʋ) p(z,z), p(z,z) p(z,STJUʋ), 

p(z,STJUʋ) p(z,z),p(z,STJUʋ) p(z,z),  

p(z,STJUʋ) p(z,STJUʋ),p(z,z) p(z,z)} 

≤ ø{0,0,0,0,p(z, STJUʋ) p(z,STJUʋ),0} 

< p(z,STJUʋ,p(z,STJUʋ) 

a contradiction. Thus z = STJUʋ. Therefore z = STJUʋ = Pʋ.  

Hence, z = Qu = ABILu = Pʋ = STJUʋ.  

Since the pair of mappings Q and ABIL are Weakly Compatible, then QABILu = ABILQu. 

i.e. Qz = ABILz. Now we show that z is a fixed point of ABIL. 

If ABILz ≠ z, then by (3.2) 

max{p²(STJUx2n , ABILz), p²(ABILz,STJUx2n)} 

≤ø{p(Px2n,STJUx2n)p(Qz,ABILz),p(Px2n,ABILz)p(Qz,STJUx2n), 

p(Px2n,STJUx2n)p(Px2n,ABILz),p(Qz,STJUx2n)p(Qz,ABILz), 

p(Qz,STJUx2n) p(Px2n,STJUx2n),p(Qz,ABILz) p(Px2n,ABILz) }; 

Taking limit as n→∞, 

max{p²(z, ABILz), p²(ABILz,z)} 

≤ø{p(z,z)p(Qz,ABILz),p(z,ABILz)p(Qz,z),  

p(z,z) p(z,ABILz),p(Qz,z)p(Qz,ABILz), 

p(Qz,z) p(z,z), p(Qz,ABILz)p(z,ABILz)}; 

≤ ø{0, 0,0,0,0, p(z,ABILz) p(z,ABILz)}, 
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< p(z,ABILz) p(z,ABILz) 

a contradiction. Thus ABILz = z. Therefore ABILz = z = Qz.  

Similarly we prove that STJUz = z = Pz. 

Hence Pz = Qz = STJUz = ABILz = z; thus z is a common fixed point of A,B,S,T,I,J,L,U,P and Q. Uniqueness 

follows trivially. Therefore z is a unique common fixed point of A, B, S, T, I, J, L, U, P and Q. 
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